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ABSTRACT- The machining of FG300 gray cast iron 
flanges is critical in various industrial applications, 
requiring optimized parameters to enhance surface quality, 
reduce tool wear, and improve efficiency. The goal of this 
research is to maximise cutting depth, feed rate, and speed 
using a Minimum Quantity Lubrication (MQL) system, 
which is a sustainable substitute for traditional cooling 
techniques. MQL minimizes lubricant consumption while 
ensuring effective cooling and lubrication, contributing to 
sustainable manufacturing. Turning experiments were 
conducted using carbide cutting tools under controlled 
MQL conditions. Tool wear and surface roughness (Ra) 
were examined as important performance metrics.  The 
statistical significance of the machining parameters and 
their impact on the responses were evaluated using the 
Analysis of Variance (ANOVA) approach.  The findings 
show that cutting speed has the greatest impact, followed 
by feed rate and cut depth. The optimized parameters led 
to improved surface finish, reduced tool wear, and 
enhanced machining efficiency. This study provides a 
systematic approach for optimizing machining parameters 
under MQL conditions, offering valuable insights for 
industries seeking to enhance productivity while reducing 
costs and environmental impact. The findings demonstrate 
that ANOVA-based optimization under MQL can 
significantly improve the machining of FG300 flanges, 
making it a promising approach for sustainable and high-
precision manufacturing. 

KEYWORDS- Minimum Quantity Lubrication (MQL), 
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I.    INTRODUCTION 

Drilling is a fundamental machining process used to create 
or enlarge cylindrical holes in solid materials through the 
application of multi-point cutting tools, typically twist 
drills—the most widely used among various types. As 
manufacturing technologies evolve, the dual focus on 
enhancing productivity and maintaining high product 
quality has become increasingly critical. Productivity is 
often measured by the Material Removal Rate (MRR), 
whereas quality is evaluated based on surface 
characteristics such as surface roughness. [12] 

Improving both productivity and quality requires careful 
adjustment of machining parameters[1][2][4]. Many 
researchers have investigated the influence of drilling 
variables to optimize performance outputs like MRR and 
surface finish. Among these, MRR is a primary indicator 
of productivity, influenced by both the machine tool and 
the selected process parameters. Surface roughness, in 
turn, is significantly impacted by MRR, creating a trade-
off that necessitates optimization. [3] 
In precision-focused sectors such as aerospace, achieving 
accurate and high-quality drilled holes is vital. To this end, 
statistical approaches like the Taguchi method are 
frequently used to examine how changes in input 
parameters affect performance metrics. [5]  Several cutting 
conditions—tool geometry, cutting speed, feed rate, depth 
of cut, and type of coolant—play critical roles in 
determining the overall efficiency and output quality of the 
process. [6] [13]   Among these, the use of an appropriate 
coolant, especially under Minimum Quantity Lubrication 
(MQL) conditions, is essential for minimizing tool wear 
and improving surface finish. 
This study aims to optimize the machining parameters 
during drilling of cast iron components on a Vertical 
Machining Centre (VMC) under MQL conditions using a 
semisynthetic cutting fluid. The objectives include 
reducing surface roughness, increasing MRR, and 
minimizing machining time. The Taguchi design of 
experiments will be used for structuring the trials, and 
Analysis of Variance (ANOVA) will be applied to identify 
statistically significant factors influencing the outcomes. 
In industrial manufacturing, casting is typically followed 
by subtractive processes such as drilling. The VMC is a 
widely adopted platform for such operations due to its 
precision and adaptability. While previous studies have 
addressed MQL-based drilling with various lubricants, 
limited research exists specifically on FG300 grade flange 
castings using semisynthetic fluids.[7] [8]  Therefore, this 
research focuses on optimizing drilling parameters for 
FG300 flanges under MQL conditions, with the goal of 
improving output characteristics and enhancing overall 
process efficiency. 
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II.    RELEVANCE 

In manufacturing, the process typically begins with 
casting, followed by material removal operations. For 
metal components, drilling is a fundamental machining 
operation often performed on a Vertical Machining Centre 
(VMC), which is widely used for producing precise drilled 
features. This study aims to optimize the machining 
parameters—specifically focusing on surface roughness, 
material removal rate (MRR), and machining time—
during the drilling of FG300 cast iron flanges under 
Minimum Quantity Lubrication (MQL) conditions. To 
evaluate and enhance these performance measures, 
statistical tools such as ANOVA and the Taguchi method 
are employed. The primary objective is to achieve 
improved machining efficiency by minimizing surface 
irregularities and maximizing MRR, contributing to cost-
effective manufacturing. 
While various researchers have explored the use of MQL 
with different cutting fluids, limited work has been 
reported on FG300 flange castings using semi-synthetic 
lubricants. [9] [10] [11]   Therefore, this research is 
directed at optimizing machining parameters on a vertical 
machining centre and examining their influence on 
performance outputs when using a semi-synthetic cutting 
fluid under MQL conditions.  

III.    METHODOLOGY 
• Selection of drilling parameters, their levels, and 

corresponding performance indicators based on an 
extensive literature review and practical insights from 
industry practices for experimental setup. 

• Determination of the machining path using the part 
drawing, followed by simulation of the VMC (Vertical 
Machining Center) program on the same machine to 
verify accuracy prior to execution. 

• Formulation of the experimental plan by designing 
appropriate trials for the chosen parameters and their 
respective levels. 

• Execution of the machining trials in line with the 
experimental design. 

• Evaluation of experimental data to identify the 
parameters that significantly affect the performance 
outcomes. 

• Application of statistical analysis tools to develop the 
correlation between process variables and output 
characteristics. 

• Determination of the most favorable combination of 
process parameters to achieve optimal performance. 

• Experimental validation of the optimized parameters 
through confirmation tests. 

 

 

 

 

Table 1: Process parameters with levels. 

Parameter Unit Leve1 Level 2 Level 3 

Speed mm/rev 1200 1800 2400 

Feed mm/rev 0.15 0.20 0.25 

Flow rate ml/hr 50 60  

The Table 1 shows the selected process parameters with 
their levels. 
 

Table 2: Parametric combinations (Taguchi Method) 

Sr. No. Speed Feed Flow Rate 

1 N1 R1 50 

2 N1 R2 50 

3 N1 R3 50 

4 N2 R1 50 

5 N2 R2 50 

6 N2 R3 50 

7 N3 R1 50 

8 N3 R2 50 

9 N3 R3 50 

10 N1 R1 60 

11 N1 R2 60 

12 N1 R3 60 

13 N2 R1 60 

14 N2 R2 60 

15 N2 R3 60 

16 N3 R1 60 

17 N3 R2 60 

18 N3 R3 60 

The Table 2 shows the Parametric combinations (Taguchi 
Method) for experiment. 
Selection of Process Parameters- The levels of these 
parameters are decided on the basis of self-initial 
experiments, literature survey as well as input from the 
production engineers who are using CNC machine. 

IV.   EXPERIMENTAL OUTCOMES AND 
IDENTIFICATION OF KEY MACHINING 

FACTORS AFFECTING SURFACE 
ROUGHNESS VIA ANOVA 

The internal surface roughness of the specimen was 
evaluated using a Mitutoyo surface roughness tester, with 
a stroke length of 0.25 × 5 μm. The table displays the 
Signal-to-Noise ratio for the surface roughness, derived 
from the average values of two experimental repetitions. 
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Table 3: Process parameters and their levels 

Exp. No 
Ra 

First trial Second trial Avg. Ra value 

1 1.9285 1.9305 1.9295 
2 1.8777 1.8797 1.8787 
3 1.8278 1.8278 1.8278 
4 2.4612 2.4632 2.4622 
5 2.4115 2.4112 2.4113 
6 2.3615 2.3595 2.3605 
7 2.9938 2.9958 2.9948 
8 2.944 2.944 2.9440 
9 2.8922 2.8942 2.8932 

10 3.2516 3.2488 3.2502 
11 3.1993 3.1993 3.1993 
12 3.1485 3.1485 3.1485 
13 3.7828 3.7828 3.7828 
14 3.732 3.732 3.7320 
15 3.6812 3.6812 3.6812 
16 4.3165 4.3145 4.3155 
17 4.2647 4.2647 4.2647 
18 4.2124 4.2151 4.2138 

The Table 3 shows the experimental trials conducted for 
surface roughness. 

 
Figure 1:  Graph of S/N ratio for surface roughness 

The Figure 1 displays the average S/N values on the Y-
axis and the varying levels of machining parameters on the 
X-axis. From the graph, it is evident that surface 
roughness tends to rise with higher cutting speeds and 

decreases as the feed rate increases. Additionally, the 
lowest surface roughness is observed when the lubricant 
flow rate is set at 50 ml/h. 
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Figure 2:  Graph for the means 

The Figure 2 describes Flow Rate and Speed are 
influential factors. Feed has minimal impact on the mean 

response. The steeper the slope, the greater the factor's 
effect on the outcome. 

Table 4: ANOVA for Ra 

Source DF Seq.SS Adj.SS Adj.MS F value P value % contribution 

Flow rate 1 7.8487 7.8487 7.8487 7.06385E+09 0.000 69.55 

Speed 2 3.4048 3.40481 1.70240 1.53216E+09 0.000 30.17 

Feed 2 0.0310 0.03101 0.01550 13953750 0.000 0.27 

Error 12 0.000 0.000 0.000    

Total 17 11.2845      

From the above Table 4 it is clear that, Flow Rate and 
Speed are the dominant factors affecting Ra, while Feed 
has a minimal but statistically detectable effect. 

Table 5: Signal-to-Noise Ratio Table for Ra, 

Table 6: Table for Means for Ra value 

Tables 5 and 6 clearly indicate that coolant flow rate has 
the greatest impact on surface roughness, with cutting 
speed and feed rate exerting comparatively lesser 
influence.   

V.    IDENTIFICATION OF KEY MACHINING 
PARAMETERS AFFECTING CIRCULARITY 

THROUGH ANOVA ANALYSIS 
Table 7: Observed Outcomes of MRR 

Exp. No MRR 
First trial Second trial Avg. MRR value 

1 1404 1404 1404 
2 1889 1889 1889 
3 2375 2375 2375 
4 2014 2014 2014 
5 2500 2500 2500 
6 2986 2986 2986 
7 2625 2625 2625 
8 3111 3111 3111 
9 3596 3596 3596 

10 1385 1385 1385 
11 1870 1870 1870 
12 2356 2356 2356 
13 1995 1995 1995 
14 2481 2481 2481 
15 2966 2966 2966 
16 2606 2606 2606 
17 3091 3091 3091 
18 3750 3750 3750 

The Table 7 shows the experimental trials conducted for 
MRR 
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3  -10.988 -9.284 

Delta 3.880 3.200 0.309 
Rank 1 2 3 

Level Flow rate Speed Feed 
1 2.411 2.539 3.123 
2 3.732 3.072 3.072 
3  3.604 3.021 

Delta 1.321 1.065 0.102 
Rank 1 2 3 
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Figure 3: Main effect plot of S/N ratio for MRR 

From Figure 3 and Figure 4, it is clear that, the circularity 
increases with the increase in the speed and the feed with 
changing drilling cycle and tool grade that also effect on 
the circularity. 

 
Figure 4: Main effect plot for means for MRR 

In continuous drilling cycle circularity decreases and in 
peck drilling cycle it increases. Coolant supply has very 
small effect on circularity. 

Table 8: ANOVA for MRR 
  

Source DF Seq. SS Adj. SS Adj.MS F value P value % contribution 

Speed 2 62.217 62.2172 31.1086 237.42 0.000 59.81 

Feed 2 40.218 40.2181 20.1090 153.47 0.000 38.66 

Flow rate 1 0.003 0.0032 0.0032 0.02 0.879 0.002 

Error 12 1.572 1.5724 0.1310    
Total 17 104.01      

 
From Table 8 it is clear that, the Flow Rate and Speed are 
the dominant factors affecting Ra, while Feed has a 
minimal but statistically detectable effect. 

Table 9: Table for S/N Ratios for MRR, Smaller is better 

 
Table 10: Table for Means 

Table 9 presents rankings derived from delta statistics, 
where delta represents the total variation between the 
highest and lowest mean values for each factor, regardless 
of intermediate fluctuations. These values help in 
assessing the relative influence of each parameter. A  

higher delta and corresponding rank indicate a stronger 
impact on the response. The data reveals that speed has the 
most substantial effect on material removal rate (MRR), 
followed by feed, with flow rate having the least influence. 
Table 10 describes  Speed is the most influential factor, 
followed by Feed, while Flow Rate shows no effect on the 
response based on mean values. 
Determination of significant process parameters for 
straightness (radial deviation) by ANOVA method 

Table 11: Experimental results of time for machining 

Exp. No Time 
First trial Second trial Avg. Time value 

1 3.53 3.54 3.54 
2 3.39 3.38 3.39 
3 3.24 3.24 3.24 
4 3.51 3.49 3.50 
5 3.35 3.35 3.35 
6 3.20 3.21 3.20 
7 3.46 3.46 3.46 
8 3.31 3.31 3.31 
9 3.19 3.13 3.16 
10 3.53 3.53 3.53 
11 3.38 3.38 3.38 
12 3.18 3.25 3.22 
13 3.48 3.48 3.48 
14 3.33 3.33 3.33 
15 3.18 3.18 3.18 
16 3.44 3.44 3.44 
17 3.29 3.29 3.29 
18 3.20 3.20 3.20 
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1 67.65 65.28 65.76 
2 67.63 67.81 67.75 
3  69.83 69.42 

Delta 0.03 4.54 3.66 
Rank 3 1 2 

Level Flow rate Speed Feed 

1 2500 1880 2005 
2 2500 2490 2490 
3  3130 3005 

Delta 0 1250 1000 
Rank 3 1 2 
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The Table 11 shows the experimental trials conducted for 
MRR 

 
Figure 5:  Graph of S/N ratio for time for machining 

In the above Figure 5, the X-axis represents various levels, 
while the Y-axis shows the average S/N ratio. From the 
graph, it is clear that machining time tends to increase as 
both speed and feed are increased. The flow rate has a 
minimal impact on the machining time. 

 

 
Figure 6: Graph of S/N ratio for time for machining 

In the main effect plot for the S/N ratio of machining time, 
the X-axis represents different levels of the process 
parameters, while the Y-axis displays the average S/N 
ratio. As seen in Figure 6, machining time increases with 
higher values of speed and feed, while the flow rate has a 
negligible effect on machining time 
 

 
Figure 7: Graph of means for time for machining 

The Figure 7 describes, Feed has the most significant 
influence on reducing the response, followed by Speed,  
 

while Flow Rate has little impact. 
 
  

Table 12: Analysis of variance for time for machining 
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Source DF Seq. SS Adj. SS Adj.MS F value P value % contribution 

Flow rate 1 0.000435 0.000435 0.000435 2.18 0.165 0.15 

Speed 2 0.016760 0.016760 0.008380 41.99 0.000 6.11 

Feed 2 0.254428 0.254428 0.127214 637.44 0.000 92.85 

Error 12 0.002395 0.002395 0.000200    

Total 17 0.274018      
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Table 12 describes Feed is the dominant factor affecting 
machining time, followed by Speed, while Flow Rate has 
negligible impact. 

Table 13: Table for S/N Ratios for time for machining, 
smaller is better 

Table 14: Table for S/N Ratios for 

 

Table 14 describes Feed is the most influential factor 
affecting process stability, followed by Speed, while Flow 
Rate has minimal effect on the S/N ratio. 

VI.   PREDICTED OUTCOME BY TAGUCHI 
METHOD 

Once the best combination of process parameters has been 
determined, the following step involves forecasting and 
validating the expected improvements in performance 
outcomes using these settings. The recommended 
configurations for each performance measure are outlined 
below: 
• For surface roughness: N1-R3-Flow rate 1 
• For MRR: N1-R1 
• For machining time: N3-R3-Flow rate 1 
Confirmation experiments are conducted to validate the 
conclusions derived from the analysis. 

VII.   ESTIMATION OF OPTIMAL SURFACE 
ROUGHNESS VALUES USING THE 

REGRESSION EQUATION 

After establishing the ideal machining parameter values, 
the next phase focused on estimating the expected 
enhancement in surface roughness and verifying these 
estimates through a confirmation experiment. This step is 
crucial for ensuring the consistency and reliability of the 
analytical findings. Table 15 illustrates how surface 
roughness is influenced by the selected process 
parameters. 

Table 15: Coefficient of factor for Ra 

Term Coefficient 
Constant -5.58667 
Flow rate 0.132067 

S 0.000888 
F -1.01667 

Regression Equation 
The regression model for predicting surface roughness 
(Ra) is given as: 
Ra = -5.58667 + 0.132067 × flow rate + 0.000888 × speed 
- 1.01667 × feed 
The model's performance is reflected in its statistical 
indicators, with R² = 100% and adjusted R² = 100%, 
demonstrating a strong fit and confirming the reliability of 
the regression equation. After accounting for significant 
variables, the model successfully explains 88.34% of the 
variability in surface roughness. 
Using the optimal parameters—flow rate = 50 ml/hr, 
cutting speed = 1200 rpm, and feed = 0.25 mm/min—the 
estimated surface roughness is calculated as: 
Ra = -5.58667 + (0.132067 × 50) + (0.000888 × 1200) - 
(1.01667 × 0.25) = 1.82 µm 
Predicted of optimal value of MRR by using following 
regression equation 
Once the optimal level of the geometry parameters is 
identified, the final step is to predict and validate the 
improvement of the performance measures using the 
optimal level, i.e. for MRR N1-R1. The confirmation 
experiment is conducted to validate the conclusions 
derived during the analysis phase. Table 16 presents the 
relationship between MRR and process parameters. 

Table 16: Coefficient of factor for MRR 

Term Coefficient 

Constant -1375 

Flow rate 0 

S 1.0417 
F 10000 

Regression Equation 
MRR= -1375 + 1.0417 * Speed + 10000* feed. 
For this model R2 value = 99.72%, R2 (adj) = 99.66% 
This suggests that the model is desirable and that, when 
important parameters are taken into account, the model 
explains 96.93% of the variability. 
MRR= -1375 + 1.0417 * 1200 + 10000* 0.15. 
 = 1375 mm3/min 
Predicted of optimal value of time for machining by using 
following regression equation 
Predicting and validating the improvement of the 
performance measures using the optimal level—that is, for 
straightness N3-R3-flow rate 2—comes last after the ideal 
level of the geometry parameters has been determined.  
The confirmation experiment's goal is to validate the 
findings from the analysis stage. 
 The first order polynomial was used to link the answer 
with the factors.  Table 17 illustrates the connection 
between straightness and process parameters. 

Table 17: Coefficient of factor for time for machining 

Term Coefficient 

Constant 4.0926 

Flow rate -0.000983 

S 0.000062 

F -2.9116 

Level Flow 
rate Speed  Feed 

1 -10.49 -10.58 -10.86 
2 -10.47 -10.47 -10.48 
3  -10.39 -10.10 

Delta 0.02 0.19 0.76 
Rank 3 2 1 

Level Flow rate Speed  Feed 

1 3.349 3.383 3.492 
2 3.339 3.341 3.341 
3  3.309 3.200 

Delta 0.010 0.075 0.291 
Rank 3 2 1 
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Regression Equation 
Time = 4.0926 - 0.000983-* Flow rate -0.000062*speed-
2.9116*feed 
For this model R2 value = 99.05%, R2 (adj) = 98.85% this 
indicate that the model is desirable and 92.46%variability 
is explained by the model after considering significant 
parameters. 
Time = 4.0926 - 0.000983 *60 - 0.000062 *2400 - 2.9116 
*0.25 
   = 3.156 

Table 18: Coefficient of factor for time for Ra 

 Prediction Experiment 

Level N1-R3-Flow rate 1 

surface roughness 1.82 1.8278 

The experiments were performed using the optimal 
settings for each parameter. Table 18 presents a 
comparison between the forecasted and observed values 
recorded during the experimental run. The close alignment 
between the predicted and measured surface roughness 
confirms the effectiveness of the chosen control parameter 
optimization. 

Table 19: Confirmation of experiments for MRR 

 Prediction Experiment 

Level N1-R1 

MRR 1375 1385 

The experimental trials were carried out using the most 
favorable level of each parameter. Table 19 provides a 
comparison between the estimated and actual circularity 
outcomes obtained during testing. The close match 
between the predicted and measured values suggests that 
the control parameters were effectively optimized. 

Table 20: Confirmation of experiments for Time for 
machining 

 Prediction Experiment 

Level N3-R3- flow rate 1 

Straightness 3.156 3.16 

The Table 20 describes confirmation test supports the 
validity of the model, with only a small deviation between 
predicted and actual results. 

VIII.   CONCLUSIONS 

Conclusions Drawn from the Experimental Study: 
• The analysis of surface roughness data indicates that 

flow rate has the most substantial effect among the 
tested parameters, while cutting speed and feed rate 
have moderate and minimal influences, respectively. 

• The most effective parameter combination for 
achieving the lowest surface roughness was identified 
as 1200 rpm spindle speed, 0.25 mm/min feed rate, and 
a coolant flow of 50 ml/hr (S1-F3-Flow Rate 1). 
ANOVA results show that the flow rate is responsible 
for 69.55% of the variation in roughness, speed for 
30.17%, and feed for only 0.27%. 

• In the analysis of Material Removal Rate (MRR), 
cutting speed was found to be the primary influencing 
factor, with feed rate having a lesser impact, while the 
coolant flow rate showed minimal effect. 

• The greatest MRR was obtained at the lowest levels of 
both speed and feed (S1-F1). ANOVA indicated that 
speed contributed 59.81% to the variability in MRR, 
feed rate 38.66%, and flow rate a minimal percentage. 

• Among the parameters studied, feed rate had the 
strongest influence on machining time, whereas speed 
and flow rate were less impactful. 

• The shortest machining time occurred at the highest 
speed setting (S3), highest feed rate (F3), and medium 
coolant flow (Flow Rate 2). ANOVA analysis 
determined that feed rate contributed 92.85% to the 
reduction in machining time, with speed and flow rate 
contributing 6.11% and 0.15%, respectively. 

• Implementing the optimized machining parameters 
under the MQL system led to a significant 
enhancement in operational performance, increasing 
the flange output rate from approximately 80% to 90%. 
Moreover, coolant expenses were reduced, and 
rejection rates dropped from roughly 32% to about 12–
13% monthly. 

IX.    FUTURE SCOPE 
Following areas for research in future are identified from 
the findings of this experimentation.  
• By experimenting with different grades of coolants, 

effects on quality of the hole can be studied.  
• An investigation on wear of tool can be carried out 

with different tool grades.  
• By using different coolant types, effects on quality of 

the hole can be studied. 
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